Graphical Gaussian modelling of multivariate time series with latent variables

نویسنده

  • Michael Eichler
چکیده

In time series analysis, inference about causeeffect relationships among multiple times series is commonly based on the concept of Granger causality, which exploits temporal structure to achieve causal ordering of dependent variables. One major problem in the application of Granger causality for the identification of causal relationships is the possible presence of latent variables that affect the measured components and thus lead to so-called spurious causalities. In this paper, we describe a new graphical approach for modelling the dependence structure of multivariate stationary time series that are affected by latent variables. To this end, we introduce dynamic maximal ancestral graphs (dMAGs), in which each time series is represented by a single vertex. For Gaussian processes, this approach leads to vector autoregressive models with errors that are not independent but correlated according to the dashed edges in the graph. We discuss identifiability of the parameters and show that these models can be viewed as graphical ARMA models that satisfy the Granger causality restrictions encoded by the associated dynamic maximal ancestral graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural learning with time-varying components: tracking the cross-section of financial time series

When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. ...

متن کامل

Edge Deletion Tests and l1 Regularisation Methods in Graphical modelling for Multivariate Time Series

In this thesis, the primary aim is to examine graphical modelling in the context of multivariate time series. This work develops on previous work, which provided two approaches, the GMTS and SIN methods, which gave results for the conditional independencies between the variables in datasets. These methods will be compared with a more recent range of methods for estimating the structure of the g...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Latent variable time-varying network inference

In many applications of finance, biology and sociology, complex systems involve entities interacting with each other. These processes have the peculiarity of evolving over time and of comprising latent factors, which influence the system without being explicitly measured. In this work we present latent variable time-varying graphical lasso (LTGL), a method for multivariate time-series graphical...

متن کامل

Graphical Modelling of Multivariate Time Series

We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependencies. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010